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Abstract The gene encoding cholesterol 7

 

a

 

-hydroxylase
(

 

CYP7A

 

), the rate-limiting enzyme in bile acid synthesis, is
transcriptionally regulated by bile acids and hormones. Pre-
viously, we have identified two bile acid response elements
(BARE) in the promoter of the 

 

CYP7A

 

 gene. The BARE II is
located in nt 

 

2

 

149/

 

2

 

118 region and contains three hor-
mone response element (HRE)-like sequences that form
two overlapping nuclear receptor binding sites. One is a
direct repeat separated by one nucleotide DR1 (

 

2

 

146-
TGGACTtAGTTCA-134) and the other is a direct repeat sep-
arated by five nucleotides DR5 (

 

2

 

139-AGTTCAaggccGGG
TAA-123). Mutagenesis of these HRE sequences resulted in
lower transcriptional activity of the 

 

CYP7A

 

 promoter/re-
porter genes in transient transfection assay in HepG2 cells.
The orphan nuclear receptor, hepatocyte nuclear factor 4
(HNF-4)

 

1

 

, binds to the DR1 sequence as assessed by electro-
phoretic mobility shift assay, and activates the 

 

CYP7A

 

 pro-
moter/reporter activity by about 9-fold. Cotransfection of
HNF-4 plasmid with another orphan nuclear receptor,
chicken ovalbumin upstream promoter-transcription factor
II (COUP-TFII), synergistically activated the 

 

CYP7A

 

 tran-
scription by 80-fold. The DR5 binds the RXR/RAR het-
erodimer. A hepatocyte nuclear factor-3 (HNF-3) binding
site (

 

2

 

175-TGTTTGTTCT-166) was identified. HNF-3 was
required for both basal transcriptional activity and stimula-
tion of the rat 

 

CYP7A

 

 promoter activity by retinoic acid.
Combinatorial interactions and binding of these transcrip-
tion factors to BAREs may modulate the promoter activity
and also mediate bile acid repression of 

 

CYP7A

 

 gene tran-
scription.—

 

Crestani, M., A. Sadeghpour, D. Stroup, G.
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Bile acid biosynthesis is a pivotal pathway in maintain-
ing the balance between cholesterol supply and disposal
in the body (1, 2). The first and rate-limiting reaction of
this metabolic pathway is the 7

 

a

 

-hydroxylation of choles-
terol, which is catalyzed by cholesterol 7

 

a

 

-hydroxylase, a

product of a liver-specific cytochrome P450 gene (

 

CYP7A

 

)
(3). Many lines of evidence suggest that cholesterol 7

 

a

 

-
hydroxylase is regulated mainly at the transcriptional level
by a wide array of stimuli including bile acids, hormones,
and second messengers (4–8). The expression of choles-
terol 7

 

a

 

-hydroxylase activity is developmentally regulated
(9, 10) and shows a strong diurnal rhythm (11, 12). Sev-
eral transcription factors have been shown to regulate

 

CYP7A

 

 expression. These include the diurnally regulated
albumin D-site binding protein (DBP) (11, 12), C/EBP
and LAP (12), hepatocyte nuclear factor (HNF)-3 (8, 13),
and HNF-4 (14). In previous studies we identified regions
important for the regulation of 

 

CYP7A

 

 gene transcription
by bile acids and hormones (7, 8, 15–17). Hydrophobic
bile acids are potent feedback inhibitors of 

 

CYP7A

 

 tran-
scription and mediate their effects through two regions in
the rat 

 

CYP7A

 

 promoter which we named bile acid re-
sponse element (BAREs) (15, 17). These BARE sequences
are highly conserved in different species and contain sev-
eral direct repeats (DR) of hormone response elements
(HRE) (AGGTCA) of various nucleotide spacing, i.e., a
DR4 (

 

2

 

72/

 

2

 

57) in BARE-I (

 

2

 

74/

 

2

 

54), and overlapping
DR1 (

 

2

 

146/

 

2

 

134) and DR5 (

 

2

 

139/

 

2

 

123) in BARE-II
(

 

2

 

149/

 

2

 

123). The DR4 was recently identified as a bind-
ing site for chicken ovalbumin upstream promoter-tran-
scription factor II (COUP-TFII) which strongly stimulated
the transcription of the 

 

CYP7A

 

 (18). The DR4 also binds
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the liver orphan receptor (LXR)/retinoid X receptor
(RXR) (19), but the role of LXR on transcriptional regu-
lation of the 

 

CYP7A

 

 has not been demonstrated. LXR is
activated by oxysterols and has been suggested to play a
role in regulating cholesterol metabolism (19). We found
that all-

 

trans

 

 retinoic acid (at-RA) could enhance the ex-
pression of the rat 

 

CYP7A

 

 and the retinoic acid response
element (RARE) was mapped to the 

 

2

 

176/

 

2

 

117 region
of the rat 

 

CYP7A

 

 promoter (7, 16). Retinoid receptors and
COUP-TFII are important regulators of morphogenesis,
development, differentiation, and metabolism (reviewed
in refs 20, 21). COUP-TFs have also been shown to play a
critical role in organogenesis (22).

As both BARE-I and BARE-II are important in basal
transcriptional activity and in mediating bile acid repres-
sion of the 

 

CYP7A

 

, transcription factors binding to these
response elements are likely to play important roles in
bile acid feedback mechanism. To understand the mecha-
nism of regulation of 

 

CYP7A

 

 gene transcription in bile
acid synthesis and cholesterol homeostasis, it is important
to identify and characterize transcription factors that
bind to the identified BAREs. In this report, we identified
HNF-4 and the RAR/RXR heterodimer as transcription
factors binding to the BARE-II by site-directed mutagene-
sis of HRE sequences and transient transfection assays of

 

CYP7A

 

 promoter/luciferase reporter chimeric genes in
HepG2 cells, and by electrophoretic mobility shift assays
(EMSA) of oligonucleotide probes with in vitro translated
nuclear receptors.

EXPERIMENTAL PROCEDURES

 

Materials

 

Restriction and modification enzymes, the plasmids contain-
ing the luciferase reporter gene pGL2-Basic and pGL2-Pro-
moter, the Luciferase Assay System and the TNT

 

®

 

 Coupled
Reticulocyte Lysate System were purchased from Promega (Mad-
ison, WI). AmpliTaq DNA polymerase was from Perkin-Elmer
Applied Biosystems (Foster City, CA). The mammalian expres-
sion vector pcDNA3 was obtained from Invitrogen (Carlsbad,
CA). pCMV

 

b

 

 was from Clontech (Palo Alto, CA). The Seque-
nase kit was acquired from Amersham Life Science (Cleveland,
OH). The radiochemicals [

 

a

 

32

 

P]dCTP (3000 Ci/mmol) and
[

 

a

 

35

 

S]dATP (1200 Ci/mmol) Sequenase grade were from ICN
(Costa Mesa, CA) and Amersham International (England, UK),
respectively. The oligonucleotides for site-directed mutagenesis
of the rat 

 

CYP7A

 

 promoter were synthesized by M-Medical (Flo-
rence, Italy) whereas the double-stranded oligonucleotides for
EMSAs were from Life Technologies (Gaithersburg, MD) and
their sequences are listed in the corresponding figures. The hu-
man hepatoblastoma cell line, HepG2, was obtained from ATCC
(Rockville, MD). Tissue culture reagents were purchased from
GIBCO-BRL (Gaithersburg, MD). The Nucleobond AX plasmid
purification kit was from Macherey-Nagel (Düren, Germany).
The expression plasmids for RAR

 

a

 

, RXR

 

a

 

, in the pCMX back-
bone were generous gifts from Dr. Ronald M. Evans (The Salk
Institute, San Diego, CA). pLen4S (HNF-4) was obtained from
Dr. W. Chen (The Rockefeller University, New York, NY), pTF3A
(COUP-TFII) was donated by Dr. M-J. Tsai (Baylor College of
Medicine, Houston, TX).

 

Plasmid construction

 

The transversion mutations of the putative hormone response
element in the region spanning nt 

 

2

 

174 to 

 

2

 

120 were generated
by double polymerase chain reaction with the megaprimer sys-
tem described by Barik (23). In some cases, the mutations were
designed to avoid the creation of known transcription factor
binding sites. The wild-type sequence from 

 

2

 

376/

 

1

 

32 region
and the corresponding mutants were subcloned into pGL2-Basic
vector cut with 

 

Kpn

 

I and 

 

Xho

 

I. The HNF-4

 

a

 

 expression vector,
pCMV-HNF-4, was made by cutting pLen4S with 

 

Bam

 

HI to re-
lease HNF-4 cDNA and subcloning the 2.8 kb insert into
pcDNA3 digested with 

 

Bam

 

HI. All the plasmids were verified by
restriction analysis and sequencing, and were purified with Nu-
cleobond columns according to the manufacturer’s instructions.

 

Cell culture and DNA transfection

 

HepG2 cells were grown in 48-well cluster plates as described
previously (7). HepG2 cells were grown to confluence for 6–7
days. Transfection experiments were performed with a modifica-
tion of the calcium phosphate–DNA coprecipitation method (7)
using 750 ng of reporter vector/well and 50 ng of pCMV

 

b

 

 to nor-
malize for differences in transfection efficiency. HepG2 were ex-
posed to transfection cocktails for 4 h and 16 h, respectively. In
cotransfection experiments, the total quantity of plasmid was
kept constant by adding an equal amount of empty expression
vector. After transfection, cells were treated with the indicated
concentrations of all-

 

trans

 

 retinoic acid or an equivalent amount
of ethanol. The concentration of ethanol never exceeded 0.1%
of the total volume. Cells were harvested with lysis buffer (40 m

 

m

 

Tricine, pH 7.8, 50 m

 

m

 

 NaCl, 2 m

 

m

 

 EDTA, 1 m

 

m

 

 MgSO

 

4

 

, 5 m

 

m

 

DTT, 1% Triton X-100) and luciferase and 

 

b

 

-galactosidase were
assayed as described (7). Results are expressed as the ratio of lu-
ciferase activity versus 

 

b

 

-galactosidase activity and are the mean 

 

6

 

standard deviations of triplicate samples. Each experiment was
repeated at least twice.

 

Preparation of nuclear extracts

 

HepG2 cells were grown to confluence (5–6 days) in 10-cm
dishes and nuclear extracts were prepared according to Dent and
Latchman (24).

 

Electrophoretic mobility shift assay

 

Double-stranded synthetic oligonucleotides carrying the 5

 

9

 

-
overhang nucleotides GATC were annealed by heating at 95

 

8

 

C in
2

 

3

 

 SSC buffer (0.3 

 

m

 

 NaCl, 0.03 

 

m

 

 sodium citrate, pH 7.0) and
slowly cooling to room temperature. The oligonucleotides were
labeled by filling-in with [

 

a

 

32

 

P]dCTP using the Klenow fragment
of DNA polymerase I and were purified through 15% polyacryla-
mide gels. RAR

 

a

 

, RXR

 

a

 

, and HNF-4 were synthesized in vitro
using the TNT coupled transcription/translation system pro-
grammed with the expression vectors pCMX-RAR

 

a

 

, pCMX-
RXR

 

a

 

, and pCMV-HNF-4, respectively. Binding reactions were
carried out by preincubating 3–6 

 

m

 

l of in vitro synthesized recep-
tors or 2–5 

 

m

 

g of nuclear extracts in binding buffer (12 m

 

m

 

HEPES, pH 7.9, 50 m

 

m

 

 KCl, 1 m

 

m

 

 EDTA, 1 m

 

m

 

 dithiothreitol,
15% glycerol) containing 2 

 

m

 

g of poly(dI-dC)poly(dI-dC) on ice
for 15–30 min. In experiments with receptors translated in vitro,
40 pmol of single-stranded unrelated oligonucleotide was added
to decrease the nonspecific binding of proteins present in the
reticulocyte lysate. Labeled double-stranded oligonucleotides
(20–40 fmol) were added and incubated for 15 min at room tem-
perature. In competition experiments, competitors were added
along with probe. The total volume of the reactions was 20 

 

m

 

l.
Samples were electrophoresed through a 4% non-denaturing
polyacrylamide gel in 0.53 TBE (45 mm Tris-borate, 1 mm EDTA)
at 160–200 V for 2 h at room temperature, dried, and quantitated
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with IP Lab Gel software (Signal Analytical Corp., Vienna, VA) in
conjunction with a PhosphorImager 445Si (Molecular Dynamics,
Sunnyvale, CA).

Statistical analysis
Statistical analysis was performed with Student’s t test using Ex-

cel 5.0 software (Microsoft, Redmond, WA).

RESULTS

Site-directed mutagenesis of the rat CYP7A promoter

Our previous results have defined a BARE-II in a DNase
I footprinted region (nt 2149 to 2118) of the rat CYP7A
promoter (17). This sequence also mediates the stimula-
tion by retinoic acid and inhibition by phorbol ester (16).
To further characterize the function of nucleotide se-
quences in BARE-II, we sequentially mutated five hexam-
eric HRE-like sequence motifs in plasmid p-376/Luc con-
struct containing the nucleotide sequence from 2376 to
132 of the rat CYP7A gene and studied the effects of
mutations on CYP7A transcriptional activity by transient
transfection of these chimeric constructs into HepG2
(Fig. 1). As shown in Fig. 1, mutations of the hexameric
HREs half-sites in DR1 and DR5 (p-376m11, m2, and
m12) reduced basal transcriptional activity of these chi-
meric genes to a much lower level than that of the wild-
type promoter chimeric construct (p-376Luc), indicating
that these DR1 and DR5 sequences are important for the
basal level of CYP7A transcription. Mutation of a HRE se-
quence at 2174/2163, (p-376m6 and m7) also reduced
promoter activity. In contrast, mutations of -163AGCCT
CTTCT-154 (p-376m8 and m9) resulted in the stimulation
of reporter activity by 2- to 3-fold. This sequence is similar
to a consensus sequence for a universal silencer element
(ANCCTCTCT) found in many genes (25). Mutation of a

39 half-site of a DR5, -128GGGTAA-123 (p-376m13), also
stimulated the reporter gene activity. These results suggest
that the transcription factor binding to the adjacent DR1
is more active than the one binding to the overlapping
DR5 in enhancing basal transcriptional activity. Moreover,
the factor(s) binding to the DR5 may interfere with those
bound to the DR1. This mutagenesis analysis suggests that
the HRE-like sequences at nt 2175/2166 and 2146/
2123 are important in activating transcriptional activity of
the rat CYP7A promoter.

Identification of a retinoic acid response element (RARE)
Previously we mapped a RARE in 2176/2117 region of

the rat CYP7A (16); the location of this RARE was further
refined by assaying the stimulatory effects of all-trans -ret-
inoic acid on the CYP7A/Luc reporter activity of wild-type
and mutant constructs, shown in Fig. 1. In this experi-
ment, 10 mm RA, instead of 1 mm used normally, was used
to maximize the difference beween plasmids in their re-
sponse to RA. Mutations of the HRE-half sites in the DR5
(p-376m2, m12 and m13) completely abolished stimula-
tory effect of retinoic acid, indicating that the DR5 (2139-
AGTTCAaggccGGGTAA-123) is a retinoic acid response
element. However, mutation of an upstream HRE half-
site, TGTTCT (p-376m6), also abolished the stimulatory
effect by at-RA suggesting that this HRE half-site is essen-
tial for the response to at-RA. Interestingly, a much stron-
ger stimulation of about 15-fold by at-RA was observed
when the 59 half-site of the DR1, TGGACT (p-376m11),
was mutated. This DR1 (TGGACTtAGTTCA) shares its 39
half-site with the 59 half-site of the DR5 (RARE). This sug-
gests that DR1 is not a RARE and destruction of the 59 half-
site of the DR1 may enhance retinoic acid receptor bind-
ing to the DR5 sequence. When the CYP7A/luciferase
gene was transfected into CV-1, neither at-RA alone nor in

Fig. 1. Basal transcriptional activity and effect of retinoic acid on the rat CYP7A/luciferase chimeric gene constructs. The wild-type rat
CYP7A/luciferase chimeric reporter plasmid p-376Luc (HRE indicated in bold types) and its derivative mutant constructs (mutations indi-
cated in lower case) were transfected into HepG2 culture as described under Experimental Procedures. Transfected samples were incubated
in the presence of ethanol (0.1% final) (open bars) or the indicated concentration of at-RA (filled bars). Results are expressed as relative lu-
ciferase unit (RLU) divided by b-galactosidase activity (expressed as Abs 420 nm) and are representative of at least three separate experi-
ments each performed in triplicate. Fold stimulation by at-RA for each mutant is shown in the right panel.
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combination with retinoid receptors cotransfected af-
fected the transcription of CYP7A (data not shown). This
suggests that transactivation of the CYP7A by retinoic acid is
liver-specific. Neither the human nor the hamster CYP7A/
luciferase genes responded to at-RA (data not shown).

Both RXR and RAR are required for binding
to the DR5 sequence

We next assessed the interaction of in vitro translated
retinoid receptors with the rat CYP7A promoter by means
of EMSA. With the probe spanning the sequence 2149/
2118, we detected a band-shift only in the presence of
both RXR and RAR (Fig. 2, lane 5), but not with RAR or
RXR alone (Fig. 2, lanes 3 and 4). The band resulting
from the binding of the RXR/RAR heterodimer was lost
in the presence of a large excess of an unlabeled, compet-
ing oligonucleotide containing a consensus DR5 (AGGTC
An5AGGTCA) (Fig. 2, lanes 6, 7). No binding of retinoid
receptors was detected when the 39 half-site of the DR5
was deleted but the DR1 motif was still intact (probe B,
Fig. 2, lanes 9, 10, 11). On the other hand, the combina-
tion of RXR and RAR, but not RAR or RXR alone, could
bind to a probe with the 59 half-site of the DR1 mutated,
but in which the DR5 remained intact (probe C, Fig. 2,
lanes 13, 14, 15). Taken together, the results of transfec-
tion assays and electrophoretic mobility shift assays reveal
that the RXR/RAR heterodimer binds to the DR5 motif

and stimulates the transcriptional activity of the CYP7A.
The RXR/RAR heterodimer prefers binding to a DR5
with the polarity of RXR occupying the 59 half-site (26).
Although RAR/RAR and RXR/RXR homodimers and
RAR/RXR heterodimer (RAR binds to the 59-site) are
known to bind a typical DR1, they do not bind to this DR1
motif of the CYP7A.

Identification of an HNF-3 binding site
As the sequence about 35 nt upstream of the RARE was

necessary for mediating the effect of retinoic acid, we
wanted to test whether retinoid receptors or other nuclear
receptors could bind to this region containing a HRE-like
half-site. The results of gel–shift experiments with the
probe spanning nt 2180 to 2151 incubated in the pres-
ence of in vitro synthesized RAR and/or RXR or HNF-4
show no band-shift (data not shown). However, nuclear ex-
tracts from HepG2 cells contained factors that shifted sev-
eral bands (Fig. 3). These band-shifts were sequence-
specific as addition of an excess of unlabeled probe could
compete out the binding. When the competitor was the oli-
gonucleotide containing the same mutation as in p-376m6,
no competition of binding was observed (Fig. 3A). The
sequence 2177 TCTGTTTGTTCT 2166 is similar to an
HNF-3 binding site in the tyrosine aminotransferase gene
(27) and contains the HRE-like half-site TGTTCT. An unla-
beled oligonucleotide probe of the known HNF-3 binding

Fig. 2. Identification of an RXR/RAR binding site in BARE-II of the rat CYP7A by EMSA. Binding of reti-
noid receptors was analyzed by EMSA. Double-stranded oligonucleotides were labeled with Klenow as de-
scribed in Experimental Procedures and incubated with in vitro translated receptors as indicated in the fig-
ure. Competition was carried out by adding 10-fold (1) or 30-fold (11) molar excess of an unlabeled
double-stranded oligonucleotide bearing a canonical DR5/RARE. Putative DR1 and DR5 sequences are indi-
cated in bold characters. The mutated site on the “probe C” is indicated with bold lower case characters.
GATC overhangs at both ends of the probes are in lower case. Positions relative to the transcription start site
are shown on top of the oligonucleotide sequences.

 by guest, on June 14, 2012
w

w
w

.jlr.org
D

ow
nloaded from

 

http://www.jlr.org/


2196 Journal of Lipid Research Volume 39, 1998

sequence of the transthyretin gene (TTR) competed out all
but one of the shifted bands (Fig. 3A). The cluster of bands
shifted with probe 2180/2151 resembles the one obtained
with HNF-3a, b and g isoforms (28). To further prove HNF-
3 binding to this region, in vitro translated HNF-3a was
used instead of crude nuclear extract and the same compe-
tition assays were repeated (Fig. 3B). When the pcDNA3 ex-
pression vector was used as a control, three unidentified
bands were shifted (Fig. 3B, lane 2). EMSA with in vitro syn-
thesized HNF-3a showed a strongly shifted band (Fig. 3B,
lane 3). Unlabeled probe (Fig. 3B, lane 4) or probe con-
taining the known HNF-3 binding sequence of transthyre-
tin gene (TTR) (Fig. 3B, lane 6), could compete out the
probes. When the probe bearing the same mutations as in
p-376m6 was added as competitor, it did not compete out
the probe (Fig. 3B, lane 5). It is clear that the 2180/2151
region binds HNF3 which is required for both basal tran-
scriptional activity of p-376/Luc and stimulation of pro-
moter activity by retinoic acid (Fig. 1).

HNF-4 binds to the DR1 sequence in the 2149/2118
region and competes with retinoid receptors for
partially overlapping binding sites

Another transcription factor that may bind to the DR1
sequence is HNF-4, a liver-enriched transcription factor of
the orphan nuclear receptor family. HNF-4 binds exclu-
sively as a homodimer to a DR1 element (29). In cotrans-
fection assays in HepG2 or CV-1 (data not shown) cul-
tures, increasing amounts of HNF-4 expression vector
enhanced the transcriptional activity of the CYP7A pro-

moter/luciferase gene by 9-fold (Fig. 4A). All trans-reti-
noic acid or HNF-4 stimulated the wild-type reporter
gene activity by 3- to 4- fold. However, the CYP7A/lu-
ciferase gene could not be further stimulated by combi-
nation of retinoic acid and HNF-4 (Fig. 4B). Mutation of
the 59 half-site (TGGACT) of the DR1 element com-
pletely abolished the transactivation by HNF-4 but the
response to retinoic acid was enhanced (Fig. 4B,
p-376m11). Conversely, mutation of the 39 half-site (AGT
TCA) of the DR1 element, which is also the 59 half-site of
the DR5 element (RARE), abrogated the activation by
both HNF-4 and retinoic acid (Fig. 4B, p-376m2). It is
noteworthy that also the basal activity of these two mu-
tants was lower than that of the wild-type promoter, sug-
gesting that binding of HNF-4 is important for the basal
transcriptional activity of CYP7A.

EMSA with in vitro synthesized HNF-4 shows a clear
shift of the probe nt 2149/2118 (Fig. 5, probe A, lane 3)
that could be competed out by addition of a large excess
of unlabeled oligonucleotide containing a consensus
binding site for HNF-4 (DR1, AGGTCAtAGGTTA) (Fig.
5, lanes 4, 5). No band-shift was detectable with the la-
beled probe with a mutation in the 59 half-site of the DR1
element (Fig. 5, probe B, lane 8). Taken together, the re-
sults of transient transfection assays and DNA–protein in-
teraction analysis demonstrate that the DR1 element (TG
GACTtAGTTCA) is a functional binding site for HNF-4.
Retinoid receptors and HNF-4 may compete for binding
to partially overlapping DR1 and DR5 motifs in the 2149/
2118 region of the rat CYP7A.

Fig. 3. Identification of an HNF-3 binding site by EMSA. Panel A: HepG2 nuclear extracts or panel B: in vitro translated HNF3a were incu-
bated with the probe indicated on the bottom of the panel (putative binding site in the probe is in bold characters) under the conditions de-
scribed in Experimental Procecures. Competitors were unlabeled probe, an oligonucleotide carrying the same mutation as p-376m6 (m6)
(see Fig. 1) or an oligonucleotide bearing the HNF-3 consensus sequence at 2110/285 of the transthyretin gene (TTR), and were added at
100-fold molar excess. Arrows indicate the major bands specifically competed for by competitors.
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HNF-4 and COUP-TFII synergistically activate CYP7A
As both HNF-4 and COUP-TFII (18) can interact with

the DR1 sequence in this region of the rat CYP7A pro-
moter, we performed cotransfection experiments to study
the effect of the combined overexpression of COUP-TFII
and HNF-4 on the CYP7A. In HepG2 cultures, HNF-4 or
COUP-TFII alone could strongly stimulate the reporter

activity of the CYP7A/luciferase gene by 9-fold (Fig. 6).
When both COUP-TFII and HNF-4 were cotransfected,
the activity was stimulated about 80-fold (Fig. 6). To rule
out a possible contribution of the downstream COUP-TFII
binding site to this synergy, we also performed a transfection
using a mutant in the downstream COUP-TFII binding site
(18). The results obtained with this mutant were identical
to those with the wild-type plasmid (data not shown), pro-
viding evidence that COUP-TFII can synergize with HNF-
4 on this region of the rat CYP7A promoter.

DISCUSSION

Our results underscored the importance of the 2149/
2118 sequence in the transcriptional regulation of the
CYP7A by hormones and bile acids. In particular, we have
recently mapped a bile acid response element and a phor-
bol ester response sequence to this region (16, 17). In this
report, HNF-4 and RXR/RAR were identified as the tran-
scription factors that bind to this BARE sequence. An un-
derstanding of the arrangement of liver-specific transcrip-
tion factors on the promoter may provide possible
mechanisms for regulation of CYP7A transcription during
development and under pathophysiological conditions.

The HNF-4 binding site in the BARE-II of CYP7A is a
DR1 which is completely conserved in the rat, human,
hamster, rabbit, and mouse gene. This HNF-4 binding site

Fig. 4. Effects of HNF-4 and at-RA on CYP7A transcription. Panel
A: increasing amounts of HNF-4 eukaryotic expression vector were
cotransfected with the reporter gene p-376Luc. Values are the
mean 6 standard deviations of triplicate samples and are expressed
as percentage of the samples cotransfected with the empty expres-
sion vector pcDNA3. The graph is representative of two indepen-
dent experiments. Panel B: p-376Luc and the mutants in the puta-
tive DR1 sequence, p-376m11 and p-376m2, were cotransfected
into HepG2 cells with 250 ng of pcDNA3 or pCMV-HNF-4 and
treated with ethanol or at-RA as indicated. Results are expressed as
luciferase divided by b-galactosidase activity and represent the
mean 6 standard deviations of triplicate samples. The graph is a
representation of three separate experiments.

Fig. 5. Identification of an HNF-4 binding site in BARE-II of the
rat CYP7A promoter by EMSA. HNF-4 was in vitro translated with
the reticulocyte lysate system and an aliquot of the receptor was in-
cubated either with probe A (nt 2149/2118) or with a mutant in
the upstream half-site of the DR1 element as shown in the figure.
Where indicated, a 10-fold (1) or 100-fold (11) molar excess of
the cold competitor carrying a perfect consensus sequence for
HNF-4 was added to the binding reaction.

 by guest, on June 14, 2012
w

w
w

.jlr.org
D

ow
nloaded from

 

http://www.jlr.org/


2198 Journal of Lipid Research Volume 39, 1998

overlaps with a downstream DR5 which binds RXR/RAR
heterodimer. However, the interaction of HNF-4 and
RXR/RAR to their binding sites are mutually exclusive in
the rat gene. HNF-4 may have higher affinity or prefer-
ence over RXR/RAR on binding to BARE-II. It is interest-
ing that HNF-3 is required for both basal level of expres-
sion and regulation of CYP7A gene transcription by retinoic

acid in the liver. The HNF-3 site (-177-TCTGTTTGTTCT-
166) identified is unique in that it contains an HRE half-
site which may play a role in mediating response to hor-
mones and other stimuli.

HNF-4 and COUP-TFII synergistically stimulate CYP7A
transcription by 80-fold. This is similar to the synergistic
stimulation of HNF-1 promoter by HNF-4 and COUP-TFII
(30). COUP-TFII may act as an auxiliary cofactor for HNF-
4 and both COUP-TFII and HNF-4 can interact with
TFIIB(31, 32). COUP-TFII also could attenuate the stimu-
latory effect of retinoic acid. This is consistent with its neg-
ative role on transcription of many genes by interferring
with other transactivators (33). It is likely that binding of
HNF-4 to the DR1 in BARE-II may bring it into juxtaposi-
tion with the downstream BARE-I and facilitate a direct in-
teraction of HNF-4 with COUP-TFII which binds the DR4
in BARE-I (Fig. 7). This will allow interaction of these
liver-enriched transactivators with general transcription
machinery and other coactivators or corepressors that reg-
ulate CYP7A gene transcription. HNF-4 has been recently
shown to interact with CREB binding protein, CBP, a tran-
scriptional coactivator of many transcription factors (34).

HNF-4 binds to DNA as a homodimer and is required
for activation of liver-specific genes involved in lipid me-
tabolism, such as apoA-I, A-II, B-100 and C-III (35). Multi-
ple loci on chromosomes 3, 5, and 11 were linked to regu-
lation of CYP7A mRNA level in response to atherogenic
diet (36). These loci coincide with the loci controlling the
high density lipoprotein (HDL) level in response to athero-
genic diet. Interestingly, apoA-I, the major apolipoprotein
in HDL particles, is also regulated by HNF-4 (28). Our
finding is consistent with the suggestion that apoA-I and
CYP7A might be coordinately regulated (37). HNF-4 may
play a major role in regulating cholesterol homeostasis.

Fig. 6. Synergistic effect of HNF-4 and COUP-TFII on CYP7A.
HepG2 cultures were cotransfected with p-376Luc (750 ng) and the
combinations of HNF-4 (250 ng) and COUP-TFII (150 ng) eukary-
otic expression vectors as indicated. The fold stimulation is indi-
cated on top of each bar. Results are expressed as mean 6 standard
deviation of triplicate samples and the graph is representative of
three independent experiments.

Fig. 7. Model of regulation of CYP7A by HNF-4, COUP-TFII, HNF-3, and RAR/RXR. HNF-4 binds to the
DR1 at nt 2146/2134 as a homodimer and can interact with COUP-TFII homodimer bound to the DR4 at
nt 272/257. The TC-rich region (nt 2117/299) bends the DNA and loops the upstream BARE-II over the
BARE-I, and facilitates the interaction between these orphan nuclear receptors. HNF- 4 may recruit coactiva-
tor CBP which directly interacts with TATA box binding protein complexes TFIID and general transcription
factors (i.e., TFIIB, not shown), and enhance the rate of transcription of RNA ploymerase II. The RARE is
partially overlapped with the HNF-4 site. Note the polarity of binding of retinoic receptors to the DR5 (i.e.,
RXR binds to the 59 half-site and RAR binds to the 39 half-site). HNF-3 binds to the region at 2175/2166 of
the rat CYP7A promoter, transactivates the basal level of gene transcription, and may also enhance transacti-
vation by these orphan nuclear receptors.
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Moreover, defects of HNF-4a gene have been found in
maturity-onset diabetes of the young (MODY) (38, 39)
and in late-onset non-insulin-dependent diabetes mellitus
(NIDDM) (40). Liver genes involved in lipid metabolism
and regulated by HNF-4 are likely candidate genes in
polygenic disease of diabetes.

The finding that HNF-4 and COUP-TFII are major tran-
scription factors binding to the BAREs suggests that these
orphan nuclear receptors may play roles in mediating bile
acid response. The endogenous ligands for HNF-4 and
COUP-TFII are not known. Recent study based on indi-
rect evidence suggested that fatty acyl-CoA thioesters were
the ligands of HNF-4a and could activate or repress gene
transcription depending on the chain length and degree
of saturation of fatty acids (41). Many endogenous ste-
roids and fatty acids have been identified as ligands for or-
phan receptors, such as peroxisome proliferator-activated
receptor g (PPARg) (42, 43). These findings are consis-
tent with our hypothesis that hydrophobic bile acids or
their metabolites might activate bile acid receptors and
exert their negative effects by binding to hormone re-
sponse elements in BARE of the CYP7A gene (15). We
have previously identified that RXR bound to the DR1 se-
quence in BARE-II (18); however, the RXR partner has
not been identified.

Bile acids have been shown to stimulate protein kinase
C isoforms and may be involved in down-regulation of
CYP7A transcription by bile acids (44). It is possible that
this signal transduction pathway may lead to phosphoryla-
tion of transcription factors and interfere with their inter-
action and binding to BAREs. This study suggests that
combinatorial interaction of nuclear receptors binding to
BAREs in response to physiological stimuli may determine
the levels of expression of cholesterol 7a-hydroxylase ac-
tivity in the liver during development and under different
pathophysiological conditions (45). We are currently study-
ing the roles of and mechanisms by which these orphan
nuclear receptors regulate CYP7A transcription in re-
sponse to bile acid feedback. Unraveling the mechanisms
of feedback regulation of CYP7A expression by bile acids
may reveal potential targets for new therapeutics for dis-
eases related to bile acid metabolism such as atherosclero-
sis, diabetes, cholestasis, and gallstone disease.
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